Combinational Logic Building Blocks and Bus Structure

ECE 152A - Summer 2009

Reading Assignment

- Brown and Vranesic
 - □ 3 Implementation Technology
 - 3.8 Practical Aspects
 - □ 3.8.7 Passing 1s and 0s Through Transistor Switches
 - □ 3.8.8 Fan-In and Fan-Out in Logic Gates
 - Tri-State Buffers (only this section of 3.8.8)
 - 3.9 Transmission Gates
 - □ 3.9.2 Multiplexer Circuit

August 24, 2009

ECE 152A - Digital Design Principles

Reading Assignment

- Brown and Vranesic (cont)
 - □ 6 Combinational-Circuit Building Blocks
 - 6.1 Multiplexers
 - □ 6.1.1 Synthesis of Logic Functions Using Multiplexers
 - □ 6.1.2 Multiplexer Synthesis Using Shannon's Expansion
 - 6.2 Decoders
 - □ 6.2.1 Demultiplexers
 - 6.3 Encoders
 - □ 6.3.1 Binary Encoders
 - □ 6.3.2 Priority Encoders
 - 6.4 Code Converters

August 24, 2009

ECE 152A - Digital Design Principles

3

Reading Assignment

- Roth
 - 9 Multiplexers, Decoders and Programmable Logic
 - 9.1 Introduction
 - 9.2 Multiplexers
 - 9.3 Three State Buffers
 - 9.4 Decoders and Encoders

August 24, 2009

ECE 152A - Digital Design Principles

Multiplexer

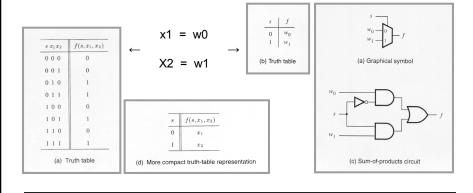
- Passes one of several data inputs to output
 - Generally 2ⁿ data inputs and always a single data output
 - n control lines determine which input is "steered" to the output
- Allows logical (not "tri-state" or electrical) implementation of buses
 - Buses and register transfer operations fundamental to digital system design

August 24, 2009

ECE 152A - Digital Design Principles

5

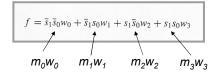
Multiplexer


- Also possible to implement arbitrary combinational logic with multiplexers
 - □ Universal, combinational logic element
- Also known as "Data Selector" and "Mux"
- In sequential operation, provides parallel to serial conversion

August 24, 2009

ECE 152A - Digital Design Principles

■ $F = Select' \cdot x_0 + Select \cdot x_1$

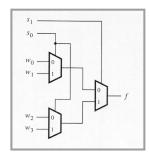


August 24, 2009

ECE 152A - Digital Design Principles

Four-to-One Multiplexer

- *i*th data input ANDed with minterm *m*_i
 - Embedded circuit generating minterms will become known as a decoder

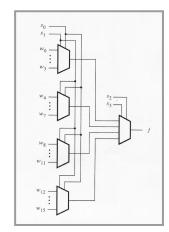

 $\begin{array}{c} s_0 \\ s_1 \\ w_0 \\ w_1 \\ w_2 \\ 10 \\ w_3 \\ 11 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ 0 \ 0 \ w_0 \\ w_1 \\ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ 0 \ 0 \ w_0 \\ w_1 \\ 1 \ 0 \ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ 0 \ 0 \ w_0 \\ w_1 \\ 1 \ 1 \ w_2 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ 0 \ 0 \ w_0 \\ w_1 \\ 1 \ 1 \ w_2 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ 1 \ 1 \ w_3 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ w_2 \\ \end{array}$ $\begin{array}{c} s_1 \ s_0 \quad f \\ \end{array}$

August 24, 2009

ECE 152A - Digital Design Principles

Building Larger Multiplexers

- 4-to-1 (4:1) Mux using 2-to-1 (2:1) Muxes
 - Simple and modular
 - Adds 2 levels of gate (propagation) delay

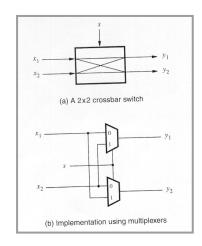

August 24, 2009

ECE 152A - Digital Design Principles

9

Building Larger Multiplexers

- 16:1 Mux constructed from 4:1 Muxes
 - Expandable to 32:1 and 64:1 with additional 2:1 and/or 4:1 Muxes
 - With additional levels of propagation delay



August 24, 2009

ECE 152A - Digital Design Principles

Multiplexer Application

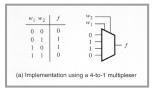
- Crossbar Switch
 - In general, n-inputs by noutputs
 - Connectivity is any input to any output
 - Important component of networking hardware
 - The bigger, the faster, the better...

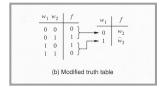
August 24, 2009

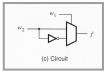
ECE 152A - Digital Design Principles

11

Combinational Design Using Multiplexers

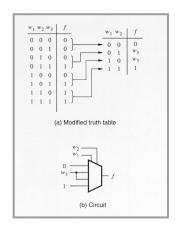

- Input variables applied to Mux select lines
 - □ "Steer" (constant) value of function to output
 - Allows implementation of n-variable function with 2ⁿ-to-1 multiplexer
 - "Steer" derived function (a variable, its complement, the constant 1 or the constant 0) to the output
 - Allows implementation of n-variable function with 2ⁿ⁻¹-to-1 multiplexer


August 24, 2009


ECE 152A - Digital Design Principles

Combinational Design Using Multiplexers

- Example 1: XOR Function
 - □ Using a 4:1 Mux
 - □ The modified Truth Table
 - Possibilities are x, x', 0, 1
 - □ The 2-input XOR using a 2:1 Mux


August 24, 2009

ECE 152A - Digital Design Principles

13

Combinational Design Using Multiplexers

- Example 2 : Three input majority function
 - □ Three input function with (2ⁿ⁻¹-to-1) 4:1 Mux

August 24, 2009

ECE 152A - Digital Design Principles

Combinational Design Using Multiplexers

- Multiplexer Synthesis Using Shannon's Expansion
 - By adding gate level circuitry to Mux inputs, an arbitrary combinational function can be realized with a 2-to-1 Mux
 - Externally generating a function of one of the variables

```
Shannon's Expansion Theorem Any Boolean function f(w_1, \ldots, w_n) can be written in the form f(w_1, w_2, \ldots, w_n) = \overline{w}_1 \cdot f(0, w_2, \ldots, w_n) + w_1 \cdot f(1, w_2, \ldots, w_n)
```

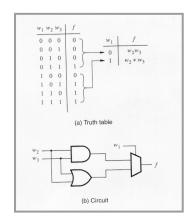
August 24, 2009

ECE 152A - Digital Design Principles

15

Combinational Design Using Multiplexers

- Example 3 : Three input majority function with 2:1 Mux
 - Algebraic expansion


```
f(w_1, w_2, w_3) = (w_1w_2 + w_1w_3 + w_2w_3)
f(w_1, w_2, w_3) = (w_1w_2 + w_1w_3 + w_2w_3)(w_1' + w_1)
f = w_1'(w_1w_2 + w_1w_3 + w_2w_3) + w_1(w_1w_2 + w_1w_3 + w_2w_3)
... and from Shannon
f = w_1'(0w_2 + 0w_3 + w_2w_3) + w_1(1w_2 + 1w_3 + w_2w_3)
f = w_1'(w_2w_3) + w_1(w_2 + w_3)
```

August 24, 2009

ECE 152A - Digital Design Principles

Combinational Design Using Multiplexers

- Example 3: Three input majority function with 2:1
 Mux
 - Truth Table and circuit implementation

August 24, 2009

ECE 152A - Digital Design Principles

17

Combinational Design Using Multiplexers

- Shannon's Expansion with 4:1 Mux
 - □ Three input majority function
 - Expansion in terms of w₁ and w₂
 - □ Verifies earlier (heuristic) solution

$$f(w_1, w_2, w_3) = (w_1w_2 + w_1w_3 + w_2w_3)$$

$$f = w_1'w_2'(00 + 0w_3 + 0w_3) + w_1'w_2(01 + 0w_3 + 1w_3)$$

$$+ w_1w_2'(10 + 1w_3 + 0w_3) + w_1w_2(11 + 1w_3 + 1w_3)$$

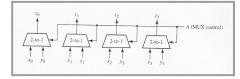
$$f = w_1'w_2'(0) + w_1'w_2(w_3) + w_1w_2'(w_3) + w_1w_2(1)$$

August 24, 2009

ECE 152A - Digital Design Principles

Multiplexers and Buses

- Bus allows data transfers between multiple sources and single or multiple destinations over a shared path (wires)
 - Bus includes multiple bits
 - Parallel data bus
 - Only one source on the bus at any time
 - Bus contention


August 24, 2009

ECE 152A - Digital Design Principles

19

Multiplexers and Buses

- Example below illustrates two, four-bit words (X and Y) multiplexed onto the Z bus
 - Register transfer operations
 - $\quad \blacksquare \quad A':Z \leftarrow X \; , \; A:Z \leftarrow Y$

August 24, 2009

ECE 152A - Digital Design Principles

Tri-State Outputs

- Utilizes third, high impedance output state
 - □ In Hi-Z state, output appears as an open circuit to bus connection
 - Mux disconnects from bus logically, tri-state output device disconnects electrically

August 24, 2009

ECE 152A - Digital Design Principles

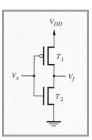
21

Tri-State Outputs (cont)

Flavors of tri-state outputs and control

Bus implementation

$$EnA \xrightarrow{4} EnB \xrightarrow{4} EnC \xrightarrow{4} EnD \xrightarrow{4} Abit adder$$


$$EnA \xrightarrow{4} EnB \xrightarrow{4} EnC \xrightarrow{4} EnD \xrightarrow{4} Coor$$

August 24, 2009

ECE 152A - Digital Design Principles

NMOS and PMOS Transistors

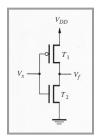
- Recall static CMOS circuits
 - Logic high output passed to output through PMOS transistor(s)
 - PMOS transistor passes "good" 1 and "bad" 0
 - Logic low output passed to output through NMOS transistor(s)
 - NMOS transistor passes "good" 0 and "bad" 1
 - $_{\square}$ "Good" 0s and 1s are GND and V_{DD}
 - "Bad" 0s and 1s have degraded DC voltage (logic) levels

August 24, 2009

ECE 152A - Digital Design Principles

23

NMOS and PMOS Transistors


- Degradation of DC signal levels is a result of the "threshold voltage" (V_T) of transistor and the "body effect"
 - - An NMOS transistor has a positive V_T
 - A PMOS transistor has a negative V_T
 - □ The threshold voltage itself is increased by the body effect by a factor of ~1.5

August 24, 2009

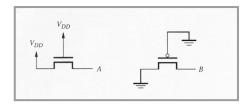
ECE 152A - Digital Design Principles

NMOS and PMOS Transistors

□ For the inverter below, assume the NMOS device has a V_T of 1V (V_{GS} > 1V) and the PMOS device has a V_T of -1V (V_{GS} < -1V) and V_{DD} = 5V

Input = 5V, V_{GS} (T1) = 5V (off), V_{GS} (T2) = 5V (on) Output = 0V (GND)

Input = 0V, V_{GS} (T1) = -5V (on), V_{GS} (T2) = 0V (off), Output = 5V (V_{DD})

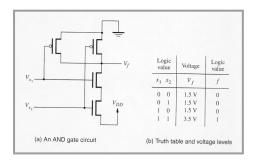

August 24, 2009

ECE 152A - Digital Design Principles

25

NMOS and PMOS Transistors

- □ Bad 1s (NMOS) and Bad 0s (PMOS)
 - $V_A = V_{DD} V_{T \text{ (NMOS)}}$ □ Input going high; turns off at $V_{GS} = V_T$
 - $V_B = -V_{T \text{ (PMOS)}}$ □ Input going low; turns off at $V_{GS} = V_T$

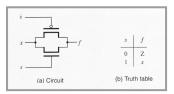


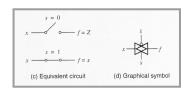
August 24, 2009

ECE 152A - Digital Design Principles

CMOS AND Gate

- Note degradation in DC signal (logic) levels
 - □ AND Gates are never built this way in CMOS

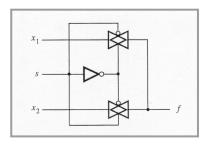

August 24, 2009


ECE 152A - Digital Design Principles

27

The CMOS Transmission Gate

- □ When enabled, the CMOS Transmission Gate:
 - Passes "good" 1s (through the PMOS transistor)
 - Passes "good" 0s (through the NMOS transistors)
- When disabled, the CMOS Transmission gate acts like a Tri-State Buffer

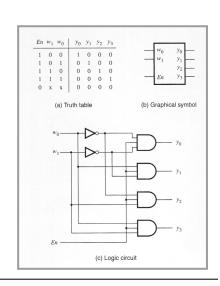


August 24, 2009

ECE 152A - Digital Design Principles

CMOS Transmission Gate MUX

2:1 Multiplexer implementation with transmission gates

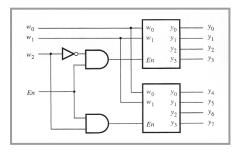

August 24, 2009

ECE 152A - Digital Design Principles

29

Decoders

- □ 2-to-4 Decoder shown
 - 2-to-2ⁿ in general
 - Enable input allows construction of decoder tree and demultiplexer
 - Generates all minterms when enabled
 - Multiple output circuits
 - One hot decoding

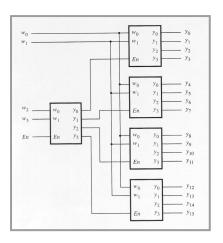


August 24, 2009

ECE 152A - Digital Design Principles

Decoder Tree

 One-bit expansion (3-to-8) by adding external decoding circuitry

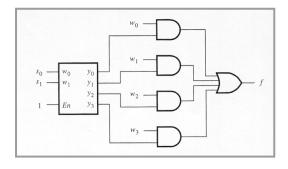

August 24, 2009

ECE 152A - Digital Design Principles

31

Decoder Tree

■ Two-bit expansion (4-to-16) by adding another 2-to-4 decoder

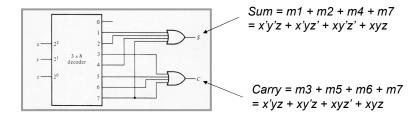


August 24, 2009

ECE 152A - Digital Design Principles

Decoder Applications

- Multiplexer from decoder
 - □ Recall "embedded decoder"

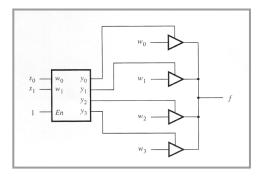

August 24, 2009

ECE 152A - Digital Design Principles

33

Decoder Applications

- Multiple Output Circuits
 - □ Full Adder using 3 X 8 Decoder



August 24, 2009

ECE 152A - Digital Design Principles

Decoder Applications

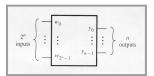
■ Decoder Bus Control/Multiplexer

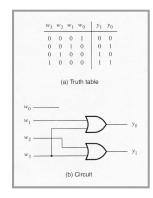
August 24, 2009

ECE 152A - Digital Design Principles

35

Demultiplexers

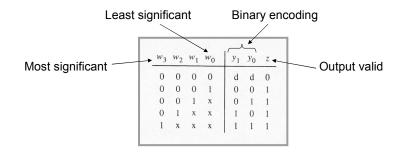

- Serial to parallel conversion
 - Send a single data bit to a specific address
- □ A 1-to-2ⁿ demultiplexer is implemented using an n-to-2ⁿ decoder
 - The (value of) the data is applied via the enable input
- Valuable circuit in sequential circuits
 - Not so much in combinational circuits
- Also referred to as Dmux's


August 24, 2009

ECE 152A - Digital Design Principles

Encoders

- Binary Encoders
 - "One hot" input, binary (or other code) representation output
 - Reverse of decoder

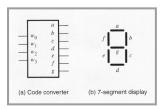

August 24, 2009

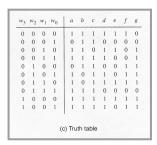
ECE 152A - Digital Design Principles

37

Encoders

- Priority Encoders
 - □ Used in prioritizing interrupts (or other events)




August 24, 2009

ECE 152A - Digital Design Principles

Code Converters

■ BCD to 7-Segment Display Code Converter

August 24, 2009

ECE 152A - Digital Design Principles